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Abstract-The inverse conduction problem arises when experimental measurements are taken in the interior 
of a body, and it is desired to calculate temperature and heat flux values on the surface. The problem is shown 
to be ill-posed, as the solution exhibits unstable dependence on the given data functions, A special solution 
procedure is developed for the one-dimensional case which replaces the heat conduction equation with an 
approximating hyperbolic equation. If viewed from a new perspective, where the roles of the spatial and time 
variables are interchanged, then an initial value problem for the damped wave equation is obtained. Since the 
formulation is well-posed, both analytic and numerical solution procedures are readily available. Sample 
calculations confirm that this approach produces consistent, reliable results for both linear and nonlinear 

problems. 

NOMENCLATURE 

Roman alphabet 

;;. 
specific heat ; 
general data functions; 

ft, fa, gt, ci,, specific data functions; 
i, j, 
k, 
L 
M. P, 

tit 
f-E 

t, 

tfv 
T, 
To(x)> 
T,(x), 
T,, T,, 

4 

x, 
x’, x”, 

disciete mesh indices [cf. equation (ZO)] ; 
thermal conductivity ; 
slab length ; 
constants ; 
summation index; 
heat source density ; 
radial variable; 
time variable ; 
tinal time; 
temperature (dependent variable); 
initial temperature; 
final temperature condition (Section 3); 
specific temperature solutions resulting 
from dataf,, gi andf,, g2, respectively 
(Section 2); 
temperature variable ; 
spatial variable (slab geometry); 
interior spatial data points, 

Greek alphabet 
a, thermal diffusivity ; 

BT error term parameter (Section 2); sample 
problem parameter (Sections 4 and 6); 
parameter [see equation (Sa)] ; 
constants ; 
“spatial” variable in equation (7); 
density ; 
“time” variable in equation (7). 

Special symbols 

I *I* absolute value ; 

* Research sponsored by the U.S. Department of Energy Present methods of solving the inverse conduction 
under contract W-7405-eng-26 with Union Carbide problem include exact, integral, and discrete numerical 
Corporation. techniques. Exact and integral methods [l, 21 have 

II . IL maximum norm [Lf. equation (4)] ; 

Ax, At, numerical stepsizes in time and space, 
respectively ; 

xi2 fj3 discrete mesh points; 

Ti. j3 Tfx, tjl* 

THE CLASSICAL ‘direct problem’ in heat conduction is 
to determine the interior temperature distribution of a 
body from data given on its surface. However, appli- 
cations arise in which data is not available over the 
entire surface but is given instead at interior points. In 
such cases, it is necessary to calculate surface tempera- 
tures rather than use them to calculate interior values. 
This constitutes an ‘inverse problem.’ 

Consider, for example, the illustration in Fig. 1. 
Boundary conditions given at x’ and x” result in a direct 
problem for x’ I x < x” and inverse problems in the 
regions where 0 I x < x’ or x” 1. x <_ L. If x’ and x” 
coincide, then two independent conditions (e.g. tem- 
perature and heat flux) must be specified, and two 
inverse problems exist. If x’ and x” are different points, 
then the direct problem is solved first and its solution 
used to obtain boundary conditions for each inverse 
problem. 

Analysis of the direct problem has progressed for 
almost two centuries, resulting in a wealth of know- 
ledge concerning the behavior of both exact and 
numerical solution procedures. Because this problem 
is well-posed, solution computations are straightfor- 
ward, even for nonlinear problems and irregular 
geometries. Unfortunately, the same is not true for the 
inverse problem. The ill-posed nature of this problem 
not only defies easy solution, but serves to discourage 
the type of massive study that has accompanied the 
direct problem. 
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t=o 
x=0 X=X’ x=x’~ x = L. 

FK;. 1. Diagram of direct and inverse problem regions. 

contributed significantly to the theory and under- 

standing of the problem, but are usually restricted to 
applications with constant physical properties, Dis- 
crete approximation by finite differences [3. 4. 53 or 

finite elements [6] are applicable to nonlinear prob- 
lems, but the success of these methods is still limited in 
many cases by the inherent ill-posedness of the prob- 
lem. Although good results have been obtained in 
some situations, discrete methods are generally not 
capable of handling more complicated problems 
without some corrective action. 

As a result, various improvements in conventional 
discrete methods have been proposed. Garifo, 
Schrock and Spedicato [4] describe a procedure to 
approximate the actual solution by solving a sequence 
of well-posed problems, Good results are obtained for 
some cases, although the authors note certain situ- 
ations where the method fails completely. Favorable 
results have also been achieved by Beck [3] using 
nonlinear estimation. In this method, accurate surface 
flux values are determined by a least squares pro- 
cedure which calculates a correction from previously 
computed (but possibly inaccurate) temperature val- 
ues. This is probably the most successful and con- 
sistent approach currently in use. 

The alternative procedure described in this article 
consists of developing a complete reformulation of the 
problem. The inverse problem is closely approximated 
by a well-posed problem whose solution is easily 
obtained. In addition, a great wealth of knowledge 
exists concerning the behavior of this new problem and 
stable, high order numerical methods are already 
available. 

To better understand the difficulties inherent in the 
inverse problem, a detailed analysis of its ill-posed 
nature is carried out in Section 2. The reformulation 
procedure is then described in Section 3. Section 4 
presents four sample problems, repre~nting slab, 
cylindrical, and spherical geometries, as well as con- 
stant and temperature-de~ndent physical properties. 
In Section 5, the new solution approach is applied to 
the sample problems, and the resulting approxi- 

mations are discretized in order to obtam nnmcrrc:li 
solutions. These numericat results arc reported 137 
Section 6 and compared to the known exact soiutit~ns. 
Finally, Section 7 provides zt s:~Iuiitar~ ~2nd 
c~~~clLJsioJ~s. 

The concept of a ‘well-posed’ problem* was first 
introduced by J. Hadamard in 1923. and has been 
developed significantly since then. There is a general 
consensus that a well-posed probletn is one for which a 
solution ‘exists’, is ‘unique’, and depends continuously 
on given data. This last condition, termed ‘stability’. 
ensures that small changes in data will produce small 
changes in the solution. 

The inverse conduction problem has been con- 
sidered ill-posed by several authors 1.3, 41, To under- 
take a further analysis. consider the heat conduction 
equation in slab geometry with constant physical 
properties 

where E = k/pC, is the thermal diffusivity. Referring 
to Fig. 1. an inverse problem arises when auxiliary 
conditions occur in the form 

T(.Y, 0) = I‘,,( 1). ild) 

For the special case where s’ =Y’ =O and Q(x, f) =O, 
Burggraf [I] has shown that iffand y are infinitely 
differentiable, then the solution to equations l(a- c) is 
given by 

This result is also obtained by Widder [Xl, who 
formally proves ‘existence’ of this solution by showing 
that both series in equation (2) converge uniformly for 
bounded t, provided that j’and f/ satisfy 

and 

for some constants h4 and P. ~Jn~queness of the 
solution (2) follows quickly, since any two solutions 
must both be equal to the right hand side of equation 
(2), and therefore to each other. 

In many applications. the initial temperature T, is 
_.-. _ .__ ---.- ~--.-----. 

*The information in this paragraph is adapted largely 
from both the translation editor’s preface and the author’s 
preface to the English edition [?I, 
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determined from a steady-state problem using f(0) and 
g(O) as input. For other situations, T, may be de- 
termined separately. In any case, if the initial condition 
T, satisfies the compatibility condition 

the solution at any point depends continuously 
on the initial temperature. However, even if equation 
(3) does hold, it will be shown that equation (2) does 
not depend continuously on f and g, 

In examining the stability of the solution (2), it is 
necessary to measure the differences between two sets 
of data and the differences between corresponding 
solutions. For this purpose, consider the maximum- 
norms for both data and solution, 

l/f\/ = max IftQI. 
OStlt, 

Now, let T,(x, t) and T,(x, t) be solutions of equation 
(2) resulting from the temperature and flux datafi(t), 
gl(t)andfi(t), g2(t), respectively. A necessary condition 
for stability is that the norm // T, - T, Ij can be made 
arbitrarily small by choosingf,, fi, gl, and g, so that 
the norms iif1 - f2 // and //gi - g2 I/ are sufficiently 
small. This is generally impossible, as can be seen by 
the following example. 

Let g, = g2 = 0 and let fl be an arbitrary analytic 
function. For a second data function f2(t) = 
fi(t) + (l/P) cos B’t, fl > 0, the “error term” (l/p) 
cos P2t can be made arbitrarily small by choosing /? 
large enough. This forces fi and fi to be arbitrarily 
“close,” as measured by the norm of equation (4), since 

ilfi -f2// = max icosj?“r, =$- 
i 1 OSfS,ff P 

However, as detailed in the Appendix, the correspond- 
ing solutions T, and T, may not be close at all, since 

1 
a Icosh&os$l. (5) =- 1 

Because the term on the far righy /.s unb&mde$ fn /I, a 
small data norm will never result in a small solution 
norm; hence, the solution (2) is unstable. 

3. GENERAL SOLUTION PROCEDURE 

A truly satisfactory solution must remain stable 
even if data is given approximately. Because of the 
unstable solution dependence on boundary data, the 

basic inverse formulation (1) does not allow an 
adequate solution unless special corrective procedures 
are used. 

The alternative procedure presented here com- 
pletely reformulates the problem so as to produce a 
well-posed system. This new system will yield a 
solution which is a good approximation to the desired 
solution of the ill-posed problem. One aspect of this 
approach involves a technique called ‘quasi-inversion’ 
by Tikhonov and Arsenin [7], who briefly discuss its 
use for a general nonlinear ill-posed system. 

To begin, consider the system 

y$+ g- CX$$= 0, O<x<L, O<t<t,, (6a) 

T(x, 0) = T,(x), 

T(Q t) = f (t), 
aT 
2; (0, t) = g(t), 

(6b) 

(6~) 

(64 

T(x “J = T,(x), (k) 

where y is a non-negative constant and T, is an 
arbitrary function. If ‘1’ is small, then equation (6a) 
closely resembles equation (la). In fact, Morse and 
Feshbach [9] suggest this (the telegraph equation) as 
a better model of heat conduction, since it does not 
permit instantaneous transfer of heat as equation (la) 
does. For y > 0, equation (6a) is hyperbolic and has a 
solution resembling traveling waves. The characteris- 
tics of this equation are lines with slopes f JQ/icl), as 
depicted in Fig. 2. Because the domain of dependence 
for the solution at any point is bounded by the 
characteristics through that point, the additional 
boundary condition equation (6e) affects only the 
shaded region of Fig. 2. For small enough y, the size of 
this region becomes insigificant ; hence, the effects of 
equation (6e) can largely be eliminated.? Thus, for 
small y, system (6) closely approximates the actual 
inverse system (1). 

In his development of nonlinear estimation, Beck 
[3] notes that the surface heat flux at time t depends on 
interior temperature values at times both before and 
after t. At first glance, this observation may appear 
somewhat questionable, since it is well known that in 
direct heat conduction, no temperature may depend 
on a future boundary vatue. However, no such rule 
exists for the inverse problem, where data is given at 
an interior point instead of at the boundary. In fact, the 
dependence of surface values on future interior data is 
a fundamental concept that will allow an efficient, 
stable solution of system (6). 

The hyperbolic system (6) involves only one space 
variable and is to be solved in the rectangle 0 5 x 4 L, 

tff the fina time temperature distribution is known, it 
should certainly be used for T,fx). In this case, computations 
in the shaded region of Fig. 2 would produce legitimate 
temperature values. 
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x=0 x=L 

FIG. 2. Characteristic curves of modified system. 

0 < t 2 tP If the roles of the independent variables are 

reversed, i.e. if .Y is regarded as the time variable and t 
as the space variable. then system (6) is identical to the 
system 

$21~ 1-34 c’u 
cc---, - _iz -TV 

(71- 1‘S C’i 
= 0. O<<<r.,, 0<7<L, (7a) 

do, 5) = TlJ(7S), (7d) 

uU,,r) = T,(r). (7e) 

where 5 is considered the space variable and 7 the time 
variable. System (7) is a conventional initial-boundary 
value problem for a second order hyperbolic equation 
with constant coefficients. Tychonov and Samarski 
[IO, pp. 107- 1161 use the Riemann function to derive a 
closed form solution for this system which is analogous 
to the D’Alembert solution for the undamped wave 
equation. The qualities of existence, uniqueness. and 
continuous dependence on data follow easily from this 
solution ; hence, system (7) represents a well-posed 
problem. 

In summary, the inverse heat conduction problem 
(I) can be closely approximated by the hyperbolic 
system (6). If viewed as in system (7), this hyperbolic 
system is well-posed ; hence, the unstable nature and 
possible data incompatibility of inverse problem (I) 
are not present in the revised formulation. Another 
advantage of this approach, to be developed later, is 

that the numerical solution of the approxlm~ting 
hyperbolic system is efficient and accurate. even for 
nonlinear problems. 

4. SAMPLE PROBLE5ls 

To further examine this approach. four test prob- 
lems are considered. All are originally stated in the 
form of system (1) and have known analytic solutions. 
Each is then reformulated according to the procedures 
outlined in Section 3 and solved. 

Problem I. Slab geometry, constant properties. This 
example is used to demonstrate the accuracy that can 
be obtained for linear problems. For simplicity. the 
spatial variable is restricted to the interval 0 < Y c I 
and the physical constants k. z are unity. Boundary 
conditions model an insulated boundary at .Y = 0 and 
a specified temperature at Y 2: Y ‘. Because these 
conditions are not given at the same point. thi,: 
problem is well-posed in the region ti C. c < t “” tllc 
formulation in the region Y” <: 5: c 1 constitute\ ;IIJ 
inverse problem. To simplify notation, iet L( = i(i i, i 1 
denote the well-posed solution (0 e. \ i. .\“I, NO ?!~ft 
T(x. t) represents only the inverse solution (_Y” c t . . 
1). Both u and r must satisfy the heat conduction 
equation (la) and the initial condition (Id) in thy 
respective regions; each must also satisfy the boundarv 
condition (lb). The equation ire ;\- (ii ii -- (i 1~ !h~ 
second boundary condition for the well-posed solution 
u. The second condition [cf. equation (lc)] for 1. ii 
obtained by applying continuity of heat flux Icon- 
servation of energy) at x”; this leads to 

Upon solution of the well-posed problem, equation (8) 
constitutes known boundary data for the ill-posed 
problem. Selecting the exact solutlotr in both regions 
to be 

7-(X. t 1 = cm .Y P’ i9i 

and substituting into equations (la). (lb) and (Id). the 
functions Q,.f; and T,, are determmed to hc 

Q(~Y. t 1 = ( 1 -i- fi) cc\s \ c!” ! ii)! 

T,(X) = cos .Y ;iii 

f’(f) =: c<>s \.‘I @’ il.?! 

A numerical solution is obtained using equations 
(10-12) as data in both the well-posed and inverse 
regions. This solution is then compared with equation 
(9) for validation. 

Problem II. Slab geometry2 highiy nonlinear. This 
example, representing heat conduction with a non- 
linear source term, is adapted from [4]. Equation (la ) 
is replaced by 



Ill-posed inverse heat conduction problem 1787 

which is solved using the auxiliary conditions I(b)-(d) 
with X” = O&t) = tan t, g(t) = 1 + tan’ t, and To(x) 
r tan x. A numerical solution is obtained and then 
compared with the exact solution 

T(x, t) = tan (x + t), (141 

Problem III. Radial geometry, nonlinear, inbomo- 
geneous material, This problem is similar to that 
encountered in evatuating the heat transfer properties 
of nuclear reactor fuel rods. A cylinder composed of 
two materials arranged in concentric regions has the 
temperature specified at the interface. For simplicity, 
the radii of the interface and outer boundary are 
specified as I = f and r = 1, respectively. Assuming 
heat canduction only in the radial dimension, the 
temperature in each region satisfies the equation 

= Q(r, t). WI 

The initial temperature and the internal tern~rat~~ 
at r = $ are also specified, ~~esponding to conditions 
(Ib) and (Id). Since the problem is independent of 
azimuthal angle, the boundary condition 

ar 
dr ,=O = 

0 (16) 

is imposed, which, as in Problem I, creates a well-posed 
problem in the inner region. Upon solution in this 
region, the continuity of heat flux provides the 
following interface condition : 

which is the second boundary condition for the outer 
(ill-posed) region. This corresponds to equation (8) in 
Problem I, and can easily be put in the form ofequation 

(lc). 

Exact solutions and physical coefficients are chosen 
to be of the form 

T(r, t) = 
(2 - 5rZ)ear, r 2 f 

cosrep’, r > $ 

k(T) = 
v(l+TX rS: 4 

t-FYI-, r>f 

(18) 

Analagous to the development of Problem I, these 
representations are substituted into equations (15), 
(Id), and (lb) to obtain the heat source and initial 
temperatures for each region as well as the interface 
temperature j(t). As described in both previous ex- 
amples, this “physical data” is used to compute a 
numerical solution, which is then compared with 
equation (18) for verification. 

When data are given at two distinct spatial points, as 
in Problems I and 111, temperatures in the well-posed 
region are determined at all time steps before the 
solution in the ill-posed region is begun. This results in 
an explicit representation for the interface flux, which 
is necessary for the solution of the inverse problem. To 
obtain a discrete ap~roximatjon in the well-posed 
region, any numerical method for parabolic equations 
can be used. The Crank-Nicolson implicit scheme is 
used for both ~~bl~rns I and Ill in this articfe, giving 
excellent results. Detaih of the method can be found in 
standard texts on rmmerical analysisj; hence, it will 
not be discussed further in this study. 

In order to solve the inverse problems (ill-posed 
regions of Problems I and III, entire regions far 
Problems II and IV) by the method presented in 
Section 3,it is necessary to add the term y @ZT/&2) to 
the left-hand sides of equations (la), (I3), (15). and 

Problem It: Quenching, sphericat geometry, Lf a hot $ See, for exampk?. Ames [ 1 if or Richtmyer and Morton 
sphere {radius r’) at temperature T is suddenly dropped EQ 

into a liquid which is maintained at the cooler 
temperature T,, then the transient temperature distri- 
bution in the solid can be determined from the 
following initial-boundary value problem for direct 
heat conduction : 

1 dT 1 i?frT) - -= 
a ar 

--, O<P<l’, tvo 
P or 

ar 
“g- (0, t) = 0. 

To simplify the analysis, the physical constants are 
chosen to be tl =c h I: k = r’_= I. The solution to 
system 119) can be expressed as the Fourier sine series 

which is used to obtain the center temperature 

T(0, t) = T, + 2(To - T,) 2 c-lr e-pZf. (21) 
n=o K 

Replacing the outer boundary condition f19c) with 
equation f2I) yields an inverse problem, whose sol- 
ution is determined and compared with the exact 
solution (20). 

I NUMERfCAL APPROXIMATIONS 
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(19a). The resulting differential equations can then be 
discretized by any conventional method for hyperbolic 
equations. Consistent with the discussion accompany- 
ing system (7), the numerical solution is obtained for 
all time steps at a given spatial node before any 
temperature values are computed at the next spatial 
node. This is in contrast to solution methods for the 
direct problem which generally solve for all spatial 
nodes at a given time step before computing any values 
at the next time step. 

As an illustration of the solution procedures used for 
each inverse problem, consider the modified equation 
for the ill-posed region of Problem i. 

Introducing the discrete mesh (.xi. fj) and using the 
customary notation T,,, = l”(.xi, fj), equation (22) is 
discretized using central differences to approximate all 
derivatives. This results in the following Znd-order, 
explicit difference equation : 

., 
;gTi.j-I t.1 

(AtI 
-27. .+Ti,i-t) i -!- 

2Ar 

x U-g.,,. * -1’,‘_‘)3;-&(ii+, j-27’i.j 

+ T, _ 1, j) + Q(x~> tj)+O[(AxlZ + (A’)‘] (23) 

Equation (23) is tri-level, since temperature values 
from three different spatial positions appear. It is 
explicit because only one temperature value at the 
unknown spatial position xi+, is involved. Courant, 
Fredricks, and Lewy [13] have shown that this 
difference equation is convergent (numerically stable 
and consistent) to the differential equation (22) pro- 
vided the inequality 

,, (As)’ 
---- < 1 

’ (Ar)2 - 

is satisfied. In practice, this condition poses virtually 
no restriction at all. since ;’ must be very small from 
previous considerations. 

The discretization of Problems Il. III and IV follows 
closely the previous discussion for Problem I. As in 
equation (23), the difference equations for these prob- 
lems, are also 2nd-order, explicit and tri-level. For 
Problem If, solution is restricted to the region where 
x+t<?t/2 since the exact solution (14) becomes 
infinite if this condition is violated. P~~b~ern if/ is 
linear, and hence, is stable if equation (24) is satisfied. 
Were the other problems linear, numerical stability 
would occur when equation (24) holds for Problem II 

and when 

;’ (Ax)’ rc , 
--- ‘- 22 

k (Ar)2 
(25) 

holds for Problem III 1131. Although stability con- 
ditions for the actual nonlinear problems are not 
known, equations (24) and (25) were easily satisfied 

(since ;: must be very small) and no computations 
showed any sign of instability. 

6. COMPlJTATIO\ KESL L’I‘S 

Computer programs have been written implemenr- 
ing the numerical procedures of the previous section 
for each of the sample problems. The exact solution5 
were also computed and compared with the difference 
solutions. Results reported here for each problem welt’ 
calculated using a value of ;’ = 0.01. although at1 runs 
with ;’ _C 0.01 gave virtually identicai results. 

Thecalculated results from all four sample problema 
showed good accuracy when compared with the cxac~ 
solutions. As depicted in Table 1. the radial profiles rif 
discrete temperatures for Problem I sIxwed agreement 
with exact values to four decimal places for most 
points. To illustrate the time behavmr of fhc solutloIl< 
for Problem I. Table 2 compares the surface tempe, ;t - 
tures and heat fluxes with the e\aci L;~ILICS. -21 each 
time step, the surface heat flux was computed from the 
temperature distribution using the following 2n&- 
order. backward diKerence approsrmation for ths 
~ern~r~~tllre derivative: 

c 0 [(A.xr“f. (26) 

.4gain, excellent agreement with exact values can be 
observed. 

The results for Problems II, III and I L’are shown 111 
Figs. 3 -6. In each case. the relattve error between the 
computed and exact solutions (analogous to columns 
4 and 7 of Table 2) is plotted for each time step of a 
short transient. The calculated fluxes used to produce 
Fig. 6 were computed using the difference approxi- 
mation of equation (26). In Fig. 3. the large error near 
the time point 0.571 is expected. since the cxac! 
solution becomes infinite here. Although the com- 
puted solution also increases. it cannot match the 
extremely rapid growth of the exact solution 

The solution to each problem was computed twice. 
once using exact boundary data and once using data 
perturbed at each time step by uniformly distributed 
random errors between f lo,,. As expected, the calcu. 
lations using exact data yield results much closer to the 
exact solutions. However, even the results using the 
inaccurate data are encouraging. since the random 
errors are propagated as slight inaccuracies in the 
surface calues. but not ai tisciaus oscillation or 
unbounded growth. 

This is. in fact, exactly what IS expected of a good 
solution method. It is impossible for any method to 
produce valid surface computations from erroneous 
data, since any calculation is only as good as the data 
used. However. it is possible to construct methods that 
(i) produce calculated values that have the same order 
of accuracy as ‘given’ data, and (ii) minimize the effects 
of instabilities arising in either problem formulation or 
numerical computation. 
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Table 1. Problem 1 spatial profile comparison’ of calculated and exact temperatures solution at selected time values’ 

Radial values 
Time 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

1.5 0.4145 0.4027 0.3898 0.3760 0.3612 0.3456 0.3291 0.3117 0.2936 0.2747 0.2552 
0.4145 0.4027 0.3899 0.3760 0.3613 0.3456 0.3291 0.3118 0.2936 0.2748 0.2552 

3.0 0.1958 0.1902 0.1841 0.1776 0.1706 0.1632 0.1554 0.1472 0.1387 0.1298 0.1236 
0.1958 0.1902 0.1842 0.1776 0.1707 0.1633 0.1555 0.1473 0.1387 0.1298 0.1236 

4.5 0.0925 0.0899 0.0870 0.0839 0.0806 0.0771 0.0734 0.0696 0.0655 0.0613 0.0569 
0.0925 0.0899 0.0870 0.0839 0.0806 0.0771 0.0734 0.0696 0.0655 0.0613 0.0569 

’ Top line is calculated; bottom line is exact solution. 
’ Uses parameter value fi = -0.5. 

Table 2. Problem I surface calculations’ 

Time 
Calculated Exact Relative Calculated Exact Relative 

temperature temperature error’ flux flux error2 

0.0 0.5403 0.5403 

0.5 0.4207 0.4208 

1.0 0.3277 0.3277 

1.5 0.2552 0.2552 

2.0 0.1987 0.1988 

2.5 0.1548 0.1548 

3.0 0.1205 0.1206 

3.5 0.0939 0.0939 

4.0 0.0731 0.0731 

4.5 0.0569 0.0569 

’ Uses parameter values fi = -0.5, x” = 0.5. 
2 Relative error = (exact - calculated)/exact. 

O.OOOO 0.8422 0.8415 - O.OOO8 

O.OOOl 0.6557 0.6553 - o.OOO5 

O.OOOl 0.5106 0.5104 - o.OOO5 

O.OQOl 0.3977 0.3975 - o.OOO5 

O.OOOl 0.3097 0.3096 - o.OOO5 

O.OOOl 0.2412 0.2411 - o.OOO5 

O.OOOl 0.1879 0.1878 - o.OOO5 

O.OOOl 0.1463 0.1462 - o.OOO5 

O.OOOl 0.1139 0.1139 - o.OOO5 

o.OOO2 0.0887 0.0887 - o.OOO5 

-4 I I I 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

TIME 

FIG. 3. Problem 11 surface temperature results. 

It is evident from Figs. 3-6 that the solution 
methodology used here satisfies the first condition. 
The general accuracy of the exact data is preserved in 
the computation of the surface values. This can be seen 
by noting that the relative error points for these cases 
lie generally within one percent of the line where error 
is zero. Inaccurate data results in surface computations 

which are also inaccurate by roughly the same order of 
magnitude. That is, random data errors within 1% 
produce surface errors generally within 2-3x. 

It has been the general thrust of this article to 
demonstrate that the new solution methodology also 
meets the second condition. The actual problem solved 
[system (6)] is well-posed. The difference equation is 
numerically stable [equations (24) and (25) are satis- 

a-.--.--. Exact Data 
+- Inaccurate Data I 

-4 I I I 
0 0.5 1 1.5 2 2.5 3 

TIME 

FIG. 4. Problem III surface temperature results, 
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I- 

< -3. I A Exact Data 

iii 
& 

L 
m Inaccurate Data 

-40C l- 0.4 0.8 -1.2 1.6 

TIME 

FK;. 5. Problem IV surface temperature results. 

-4 
ii . + Exact Data 

-6 - Inaccurate Data 

TIME 

FK;. 6. Problem III surface flux results 

fied]. In each case, the error in the computed surface 
values has no definite frequency and in several cases 
actually decreases in time. It is the direct result of 
positive and negative random errors, reflecting only 

the inaccuracy of the data ; oscillatory or growth 
instability is not present. Thus, it is evident that the 
second condition is indeed satisfied by the solution 

approach presented here. 

The data in most real-world problems contain 
varying amounts of random errors or noise, which can 

often be largely eliminated by smoothing techniques. 
Although this subject can be considered indepen- 
dently, it is worthy of mention here. While smoothing 
generally results in more accurate data, some per- 
turbations that appear to be inaccuracies might ac- 
tually be valid components of the data. In any case, the 
smoothing techniques must maintain or improve the 
validity of the data itself. The inverse problem solution 
methodology must then produce surface values that 
are accurate with respect to whatever data is given. 
Although several popular approaches have combined 
smoothing with the inverse solution technique, this, in 
general, need not be the case. 

7. SUMMARY AND COKC 1.1 SIOVs 

The analysis of the linear inverse tormulatlon 17: 
Section 2 showed that the exact solution OJ sqstem ii ) 
is characterized by discontinuous dependence OII dat;! 
(instability). Nevertheless, most previous so1ut10n pr”- 
cedures have attempted to solve system (I 1 by ;i <!ireci 
approach. and certain of these methods habe &taincl? 
reasonable solution results for some ;ases kiouc\t’t. 
the ill-posed nature of the problem Implie\ th:~[ 31rci.r 
solution procedures are not capabltr oi con>l~t<i;t!,, 
producing reliable results. 

In order to be assured of a meamnglLi solutroi!. ,; 
was useful to completely reformulate the problem. 
Thus. the heat conduction operator was appro\mared 
by a hyperbolic equation. and was solved rlurnrrlcrdi~ 
for all time steps at each spatial node before progrc\s- 

ing to the next spatial node. Although this \:olatex :i 
fundamental principle of ‘direct’ heat cotlduc~~im 

(namely. temperatures at a given tinit’ do noi depi.& 
on temperature values at any futuri’ time). it ~a5 \ccii 
to be a significant factor in devising ;5 <o!tl”n~o:~ 

methodology for the inverse prohizm Of p;lrticttlar 
importance in this approach was the mtroductron ~)i 

the coefficient ;’ [cf. equation (6a)]. which was requu& 
to be small in order to (i) assure that the governing 
equation accurately described heal conducttori ($1 I 
reduce the domain of influence ol‘ the added final time 
condition, and (iii) maintain numerical stabiiily. The 
formulation presented in Section i utilized all of these 

elements to produce a well-posed problem that closei> 
approximated the original inverse problem. 

The new solution method was applied tt> hexeral te\t 
problems and the resulting solutic~n~ \cerc I:) ~(vx! 
agreement with the known exact ~olutlons. Tile pro- 

cedure was applicable to nonlinear problcmi <I& it) 
problems involving several matcrlal regior?~. I‘hc 
numerical solution was obtained efticlently :md 
quickly by an explicit, Znd-order algorithm ; solution 
stability was maintained with insignificant restrictions 

on stepsizes, even for randomly perturbed data. Thus, 
the method appears to be applicable to virtually an! 

formulation of this inverse heat conduction problem 
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. . . 
Su~titu~ng the equalities 

1 + i = J(Zi), 1 - i = J(-Zif 

into equation (Al) gives 

APPENDIX 

Taking the difference of the functions 
equation (5) results in 

(A.)) 

ANALYSE ET SOLUTION DU PROBLEME INVERSE ET MAL 
POSE DE LA CONDUCTION THERMIQUE 

R~rne--ti probleme inverse de la conduction se pose quand les mesures experiementales sent faites B 
l’intkieur du corpset qu’il est souhaitb conna&re la te~ratureet le AUK the~que a Ia surface. Gn montre 
que le probl&me est ma1 pose car la solution rev&e une dependance instable des fonctions des dorm&. Une 
procedure sp&iale est developpee pour le cas monodimensionnel et elie remplace l’iqquation de la conduction 
thermique par une equation hyperbolique approchante. Ilest montre que si les r&es des variables de temps et 
d’espace sent interch~g~s on obtient un probleme a vaieur initiale pour l%quation d’onde amortie. Puisque 
cette formulation est bien pas+ les pro&lures bales et num&iques sent e%cacna Des exemples de 
calcul montrent que cette approche conduit a des r&&tats cohemnts pour des problemes lin$aires ou non- 

lineaires. 

ANALYSE UND LGSUNG DES SCHLECHT KON~ITIONIERT~N INVERSEN 
WARMELEITUNGS-PROBLEMS 

Zus~mmenfassung - Das inverse Problem der Warmeleitung tritt auf, wenn experimentelle Messungen im 
Jnneren eines Korpers vorliegen und die Werte von Temperatur und Warmestrom auf der Oberfliiche 
gem&t sind. Es wird gexeigt, daB diese Aufgabe insofern schlecht konditioni~t ist, als die Losung eine 
instabile Abhiingigkeit von den gegebenen Daten-Funktionen zeigt. Es wird ein spexielks Losungsverfahren 
fiir den eindimensionalen Fall entwickelt, bei welchem die W~~leit~gsg~ichu~g dwch eine approximie- 
rende hyperbolische Gleichung ersetzt wird Aus der Sicht einer neuen Perspektive, bei der die RoIIen &r 
Raum- und der Zeitvariablen vertauscht sind, wird ein A~~gs~rtprob~m fiir die gediimpfte We~ng~~- 
cbung erhahen. Da diese Formulierung des Problems gut konditioniert ist, stehen sowohl analytische als 
such numerische L~ungs~~ah~n d&r zur Verftigung. ~ispie~hnung~ bestiitigen, dag dieser Ansatx 

konsistente, ~l~~liche Ergebnisse fiir lineare und nichtlineare Probleme liefert. 
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AHAJIM3 M PEllJEHHE HEKOPPEKTHO~ OEPATHOA 3AAAqM T~n~OnPOBO~H~T~ 

.4H~aTaunn - 06panIan la~aqa Te~,~Oo~BO~H~T~ 303HAKaeT B TOM cnysae, Korfla no 3KcIlepI4MeH- 

TUIbHbIM AaHHblM, 3aMe~HHbIM BHyTpH TeJa. HeO6XOA~MO paCC’IHTaTb TeMIIepaTypy W iI;LOTHOClh 

TeIIJIOBOTO 11OTOKII Ha nOBepXHOCT~. nOKa3aHO. YTO TdKyIO 3aRaYy TPyiIHO C~OpMy.~~pO~aIb iiOp- 

fEKTH0, ldK KBK ~IlIeIIIIe HeyCTOfiYHBO 3aBHCliT 07 3Wl.aHHbiX 3KCnepHMeHT~qbHO @HKUWii. ~~LL’IO~etI 

C~e~~~~bHbI~ MeTOn peLI.IeHffZ LUI% OEHOMepHOZ’O CnyYaff, B KOTO~~M ypaBHeHne Te~~orI~eo~HocTn 

3aMeIISeTCIi a~~pOKC~M~py~~~M er0 ~NIIep60JIIi’ieCKHM ypaLWIeI?IieM, ECJIR pi?CCMaTfSiBLITb 3a.la’Iy 

“On fipyWM yI-JIOM 3~III,SI, 7. e. IIOMeHIITb pO.VSMH IIpOCTpaHCTBeHHbie W 6pMeHHbIe IIep+IeHHbIe. 

TOMOX(H0 IIOJIyWTb 32WiYy &fIR ypBHeHH%, OnMCbIBa~uler03aTyXarouree BOJlHbI. B CBR3AC leM. YlO 

TaKaR ~OpMyJlHpOBKa RBJIReTCII KOppeXTHOji, MOXHO JIerKO IIO,Ty’IHTb EIHaJIlTUYeCKOe M ‘IHC,?eHHOe 

,,‘?ILIeHHR. f+it IIf,I,MepZIX “OKa7aH0, 970 TaKOii MeTOn aaeT COFJ,aCOBaHHbIe H HaaemHble ~‘Iy:lblLilbl 

IIpH ~UIeHHk, KBK ffHH&iHbIX,TaK N He.-IHHetiHb!X 3Wa’I. 


