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Abstract—The inverse conduction problem arises when experimental measurements are taken in the interior
of abody, and it is desired to calculate temperature and heat flux values on the surface. The problemis shown
to be ill-posed, as the solution exhibits unstable dependence on the given data functions. A special solution
procedure is developed for the one-dimensional case which replaces the heat conduction equation with an
approximating hyperbolic equation. If viewed from a new perspective, where the roles of the spatial and time
variables are interchanged, then an initial value problem for the damped wave equation is obtained. Since the
formulation is well-posed, both analytic and numerical solution procedures are readily available. Sample
calculations confirm that this approach produces consistent, reliable results for both linear and nonlinear
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problems.
NOMENCLATURE I maximum norm [of. equation (4)];
Roman alphabet Ax, At, numerical stepsizes in time and space,
C, specific heat ; respectively;
fa general data functions; Xi discrete mesh points;
J1s 125 915 g2, specific data functions; ip Tix;, t;).

i J, discrete mesh indices [cf. equation (20)];
k, thermal conductivity;

L, slab length;

M, P, constants;

n, summation index;

Q, heat source density;

r, radial variable;

t, time variable;

Ly final time;

T, temperature (dependent variable);
Tofx),  initial temperature;

T (x), final temperature condition (Section 3};
T,, T,, specific temperature solutions resulting

from data f,, g, and f,, g,, respectively
(Section 2);

u, temperature variable ;

X, spatial variable (slab geometry);

x', x",  interior spatial data points.

Greek alphabet
a, thermal diffusivity ;

B, error term parameter (Section 2); sample
problem parameter (Sections 4 and 6);

7, parameter {see equation {6a)];

y, v, constants;

g, “spatial” variable in equation (7);

o density;

T, “time” variable in equation {7).

Special symbols
| '}, absolute value;

* Research sponsored by the U.S. Department of Energy
under contract W-7405-eng-26 with Union Carbide
Corporation.

1. INTRODUCTION

THE crassicaL ‘direct problem’ in heat conduction is
to determine the interior temperature distribution of a
body from data given on its surface. However, appli-
cations arise in which data is not available over the
entire surface but is given instead at interior points. In
such cases, it is necessary to calculate surface tempera-
tures rather than use them to calculate interior values.
This constitutes an ‘inverse problem.’

Consider, for example, the illustration in Fig. 1.
Boundary conditions given at x’ and x” result in a direct
problem for x” < x < x” and inverse problems in the
regions where 0 < x < x"orx” < x < L. If x" and x”
coincide, then two independent conditions (e.g. tem-
perature and heat flux) must be specified, and two
inverse problems exist. If x’ and x” are different points,
then the direct problem is solved first and its solution
used to obtain boundary conditions for each inverse
problem.

Analysis of the direct problem has progressed for
almost two centuries, resulting in a wealth of know-
ledge concerning the behavior of both exact and
numerical solution procedures. Because this problem
is well-posed, solution computations are straightfor-
ward, even for nonlinear problems and irregular
geometries. Unfortunately, the same is not true for the
inverse problem. The ill-posed nature of this problem
not only defies easy solution, but serves to discourage
the type of massive study that has accompanied the
direct problem.

Present methods of solving the inverse conduction
problem include exact, integral, and discrete numerical
techniques. Exact and integral methods [1, 2] have
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Fic. 1. Diagram of direct and inverse problem regions.

contributed significantly to the theory and under-
standing of the problem, but are usually restricted to
applications with constant physical properties. Dis-
crete approximation by finite differences [3, 4. 5] or
finite elements [6] are applicable to nonlinear prob-
lems, but the success of these methods is still limited in
many cases by the inherent ill-posedness of the prob-
lem. Although good results have been obtained in
some situations, discrete methods are generally not
capable of handling more complicated problems
without some corrective action.

As a result, various improvements in conventional
discrete methods have been proposed. Garifo,
Schrock and Spedicato [4] describe a procedure to
approximate the actual solution by solving a sequence
of well-posed problems. Good results are obtained for
some cases, although the authors note certamn situ-
ations where the method fails completely. Favorable
results have also been achieved by Beck [3] using
nonlinear estimation. In this method, accurate surface
flux values are determined by a least squares pro-
cedure which calculates a correction from previously
computed (but possibly inaccurate) temperature val-
ues. This is probably the most successful and con-
sistent approach currently in use,

The alternative procedure described in this article
consists of developing a complete reformulation of the
problem. The inverse problem is closely approximated
by a well-posed problem whose solution is easily
obtained. In addition, a great wealth of knowledge
exists concerning the behavior of this new problem and
stable, high order numerical methods are already
available.

To better understand the difficulties inherent in the
inverse problem, a detailed analysis of its ill-posed
nature is carried out in Section 2. The reformulation
procedure is then described in Section 3. Section 4
presents four sample problems, representing slab,
cylindrical, and spherical geometries, as well as con-
stant and temperature-dependent physical properties.
In Section 5, the new solution approach is applied to
the sample problems, and the resuiting approxi-
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mations are discretized in order to obtain numerical
solutions. These numerical results arc reported in
Section 6 and compared to the known exact solutions.
Finally. Section 7 provides & summary and
conclusions.
2. ILL-POSEDNESS OF THE INVERSE HEA'T
CONDUCTION PROBLEM

The concept of a ‘well-posed’ problem* was first
introduced by J. Hadamard in 1923, and has been
developed significantly since then. There is a general
consensus that a well-posed problem is one for which a
solution ‘exists’, is ‘unique’, and depends continuously
on given data. This last condition, termed ‘stability’,
ensures that small changes in data will produce small
changes in the solution.

The inverse conduction problem has been con-
sidered ill-posed by several authors [3, 4]. To under-
take a further analysis, consider the heat conduction
equation in slab geometry with constant physical
properties

(12 T

cr
oo s = Qe ), Oex L, O<t <, {1a)
ol X" X

where o = k/pC,, is the thermal diffusivity. Referring
to Fig. 1, an inverse problem arises when auxiliary
conditions occur in the form

Tx", 1) = f(5), {1b}
cT o
S (XL ) = gl e}
X

T(x.0) = T {x). {1d)

For the special case where X =x"=0and Q(x, 1)=0,
Burggraf [1] has shown that if f and g are infinitely
differentiable, then the solution to equations 1{a—c) is
given by

SOEAN

T(x. 1) = i -1-»-(\ ) (1)

n:()(zn)! o

¢ TRV
x ¥ R w2
né‘o 2n+ 0! ( o ) grin (2

This result is also obtained by Widder [8], who
formally proves ‘existence’ of this solution by showing
that both series in equation (2) converge uniformly for
bounded ¢, provided that f and g satisfy

@] < M (3;?)5
and A

‘ t
Egl"} () ! < P (2”}
for some constants M and P. Uniqueness of the
solution (2} follows quickly, since any two solutions
must both be equal to the right hand side of equation
(2), and therefore to each other.

In many applications, the initial temperature T’ is

* The information in this paragraph is adapted largely
from both the translation editor’s preface and the author’s
preface to the English edition [7],
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determined from a steady-state problem using f(0) and
g(0) as input. For other situations, T\, may be de-
termined separately. In any case, if the initial condition
T, satisfies the compatibility condition

o1
=o(2n )’( >f<">(0)

% x2 n .
Z(Zn-&—l)’( ) ©. G

then the solution at any point depends continuously
on the initial temperature. However, even if equation
(3) does hold, it will be shown that equation (2) does
not depend continuously on f and g.

In examining the stability of the solution (2), it is
necessary to measure the differences between two sets
of data and the differences between corresponding
solutions. For this purpose, consider the maximum-
norms for both data and solution,

|7 = max |f©)]

Tolx) =

lal = Jnax lg(®)],

IT| = max |T(x, 1)|. @)
O<x<L

O<igiy

Now, let T,(x, t) and T,(x, ¢) be solutions of equation
(2) resulting from the temperature and flux data f,(¢),
g,(t)and f,(t), g,{t), respectively. A necessary condition
for stability is that the norm | T, — T, | can be made
arbitrarily small by choosing £}, f,, g, and g, so that
the norms ||f; — f;| and ||g, — g, are sufficiently
small. This is generally impossible, as can be seen by
the following example.

Let g, = g, = Oand let f; be an arbitrary analytic
function. For a second data function fo(1) =
fi(®) + (1/B) cos B2, B> O, the “error term” (1/B)
cos %t can be made arbitrarily small by choosing f
large enough. This forces f; and f, to be arbitrarily
“close,” as measured by the norm of equation (4), since

[fi =f2] = max

o<ty

B

However, as detailed in the Appendix, the correspond-
ing solutions T, and T, may not be close at all, since

=Tl g | 5 S

1
—cos Bt =

1
=— 'coshgcosg . (5
Because the term on the far right is unbounded in §, a

small data norm will never result in a small solution
norm; hence, the solution (2) is unstable.

3. GENERAL SOLUTION PROCEDURE

A truly satisfactory solution must remain stable
even if data is given approximately. Because of the
unstable solution dependence on boundary data, the
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basic inverse formulation (1) does not allow an
adequate solution unless special corrective procedures
are used.

The alternative procedure presented here com-
pletely reformulates the problem so as to produce a
well-posed system. This new system will yield a
solution which is a good approximation to the desired
solution of the ill-posed problem. One aspect of this
approach involves a technique called ‘quasi-inversion’
by Tikhonov and Arsenin [ 7}, who briefly discuss its
use for a general nonlinear ill-posed system.

To begin, consider the system

y(?;T+ Z;r ag:gx 0, O<x<L, O<t<ty, (6a)
T(x,0) = Tyx), (6b)

T(0,1) = f(1), (6¢)

0.0 =40 (6d)

Tix, t;) = Ty{x), {6¢)

where y is a non-negative constant and T, is an
arbitrary function. If y is small, then equation (6a)
closely resembles equation (1a). In fact, Morse and
Feshbach [9] suggest this (the telegraph equation) as
a better model of heat conduction, since it does not
permit instantaneous transfer of heat as equation (1a)
does. For y > 0, equation (6a) is hyperbolic and has a
solution resembling traveling waves. The characteris-
tics of this equation are lines with slopes + ./(y/x), as
depicted in Fig. 2. Because the domain of dependence
for the solution at any point is bounded by the
characteristics through that point, the additional
boundary condition equation (6¢) affects only the
shaded region of Fig. 2. For small enough y, the size of
this region becomes insigificant; hence, the effects of
equation (6e) can largely be eliminated.+ Thus, for
small v, system (6) closely approximates the actual
inverse system (1).

In his development of nonlinear estimation, Beck
[3] notes that the surface heat flux at time t depends on
interior temperature values at times both before and
after ¢. At first glance, this observation may appear
somewhat questionable, since it is well known that in
direct heat conduction, no temperature may depend
on a future boundary value. However, no such rule
exists for the inverse problem, where data is given at
an interior point instead of at the boundary. In fact, the
dependence of surface values on future interior data is
a fundamental concept that will allow an efficient,
stable solution of system (6).

The hyperbolic system (6) involves only one space
variable and is to be solved in the rectangle 0 < x < L,

t1If the final time temperature distribution is known, it
should certainly be used for T',{x). In this case, computations
in the shaded region of Fig. 2 would produce legitimate
temperature values.
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Fi1G. 2. Characteristic curves of modified system.

0 <t < t,. Ifthe roles of the independent variables are
reversed, r.e. if x is regarded as the time variable and 1
as the space variable, then system (6) is identical to the
system

% &u

-
ot

)
i

l

- — =0, 0<cf<t_,, O<t <L, {73)

3

g

H
(,éz

-

u(Z,0) = f(<), {7b)

cu .
SHE0) = g (4, (7c)
0T
U(O, T) = To(T‘)a (7d)
utty, ) = T,(7), (7e)

where £ is considered the space variable and t the time
variable. System (7} is a conventional initial-boundary
value problem for a second order hyperbolic equation
with constant coefficients. Tychonov and Samarski
{10, pp. 107-116] use the Riemann function to derive a
closed form solution for this system which is analogous
to the D’Alembert solution for the undamped wave
equation. The qualities of existence, uniqueness, and
continuous dependence on data follow easily from this
solution; hence, system (7) represents a well-posed
problem.

In summary, the inverse heat conduction problem
{1) can be closely approximated by the hyperbolic
system (6). If viewed as in system (7), this hyperbolic
system is well-posed ; hence, the unstable nature and
possible data incompatibility of inverse problem (1)
are not present in the revised formulation. Another
advantage of this approach, to be developed later, is
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that the numerical solution of the approximating
hyperbolic system is efficient and accurate, even for
nonlinear problems.

4. SAMPLE PROBLEMS

To further examine this approach, four test prob-
lems are considered. All are originally stated in the
form of system (1) and have known analytic solutions.
Each is then reformulated according to the procedures
outlined in Section 3 and solved.

Problem I. Slab geometry, constant properties. This
example is used to demonstrate the accuracy that can
be obtained for linear problems. For simplicity. the
spatial variable is restricted to the interval 0 < x < |
and the physical constants k. « are unity. Boundary
conditions model an insulated boundary at x = 0 and

a specified temperature at x = x". Because these
conditions are not given at the same point, this
problem is well-posed in the region O < « < " the

formulation in the region x” < ¥ < 1 constitutes an
inverse problem. To simplify notation, let & = wix, i
denote the well-posed solution {00 <« x < x"L o that
T(x, t) represents only the inverse solution {x" < x -
1). Both u and T must satisfy the heat conduction
equation {la) and the initial condition (1d} in therr
respective regions ; cach must also satisfy the boundary
condition (1b}). The equation {uw oy {01 {} = O is the
second boundary condition for the well-posed solution
. The second condition [cf. equation (lcj] for 7 s
obtained by applying continuity of heat flux {con-
servation of energy) at x”; this leads to
U &T

X ) = o (X 1
X X

A S {8}

Upon solution of the well-posed problem, equation (8}
constitutes known boundary data for the il-posed
problem. Selecting the exact solution in both regions
to be

T(x. t) = cos x e 9

and substituting into equations (1a), (1b)and (1d). the
functions Q. . and T, are determined to be

[

Qx. 1y = (1 + fcos ve

Tolx) = cos x {1

() = cos x" e, ]

A numerical solution is obtained using equations

(10- 12} as data in both the well-posed and inverse

regions. This solution is then compared with equation
(9) for validation.

Problem II. Slab geometry, highly nonlinear. This
example, representing heat conduction with a non-
linear source term, is adapted from [4]. Equation {1a)
is replaced by
2y
—————— S = (14 TH(L=2T),

ot ox?

O<x<l, Bor<i, (13}
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which is solved using the auxiliary conditions 1(b}-(d)
with x" = 0,f(t) = tant,g(t) = 1 + tan’ t, and T(x)
= tan x. A numerical solution is obtained and then
compared with the exact solution

T(x, 1) = tan(x + ¢). {14)

Problem 111. Radial geometry, nonlinear, inhomo-
geneous material. This problem is similar to that
encountered in evaluating the heat transfer properties
of nuclear reactor fuel rods. A cylinder composed of
two materials arranged in concentric regions has the
temperature specified at the interface. For simplicity,
the radii of the interface and outer boundary are
specified as r = § and r = 1, respectively. Assuming
heat conduction only in the radial dimension, the
termnperature in each region satisfies the equation

T 129 oT
T)— — ——— | rk(T) — | = . (15
pCUT) = — = [r (M) af} Q.0 (15)
The initial temperature and the internal temperature
atr = } are also specified, corresponding to conditions
{1b) and (1d). Since the problem is independent of
azimuthal angle, the boundary condition

oT

il =0
or

r=0

(16)

isimposed, which, as in Problem I, creates a well-posed
problem in the inner region. Upon solution in this
region, the continuity of heat flux provides the
following interface condition:

bl
[k('n%f}] r=%*=[km—§§] _t -, (7

which is the second boundary condition for the outer
(ill-posed) region. This corresponds to equation (8) in
Problem I, and can easily be put in the form of equation
(1c)
Exact solutions and physical coefficients are chosen
to be of the form
(2 —5r%)e?,
cosre®,

14T
M) = {V(ii}")’

£

- s

T, t) = { (18)

e
vV AV
B pajbe pafes 2P

-
v
s

pC(T) = { §20-T7),

&H(10=-T), r

A
o

Analagous to the development of Problem I, these
representations are substituted into equations (15),
(1d), and (1b) to obtain the heat source and initial
temperatures for each region as well as the interface
temperature f(r). As described in both previous ex-
amples, this “physical data” is used to compute a
numerical solution, which is then compared with
equation (18) for verification.

Problem V. Quenching, spherical geometry. If a hot
sphere (radius '} at temperature T is suddenly dropped

1787

into a liquid which is maintained at the cooler
temperature T, then the transient temperature distri-
bution in the solid can be determined from the
following initial-boundary value probiem for direct
heat conduction:

1 8T 18%T
ol T=——f’;aa}-, O<r<r, t>0 {19a)
a Of Foor
T(r, 0) = Ty, (19b)
(ké:{ + hT)] = hT, {19¢)
3?‘ Py
T 4
570,1)=0 (19d)

To simplify the analysis, the physical constants are
chosen to be o = h = k = = 1. The solution to
system {19) can be expressed as the Fourier sine series

2
Tir,ty =T, + ;{Ta-a’fi)

x ¥y (*:) e-#m0 singr, (20
n=0 Hn

’ w(2n+l)r£

ln”"‘ 2 4

which is used to obtain the center temperature

TON=T, +2ATe~T) ¥ SV oy
n=0 n

Replacing the outer boundary condition (19¢) with

equation {21} yields an inverse problem, whose sol-

ution is determined and compared with the exact

solution {20).

5. NUMERICAL APPROXIMATIONS

When data are given at two distinct spatial points, as
in Problems I and 111, temperatures in the well-posed
region are determined at all time steps before the
solution in the ill-posed region is begun. This results in
an explicit representation for the interface flux, which
is necessary for the solution of the inverse problem. To
obtain a discrete approximation in the well-posed
region, any numerical method for parabolic equations
can be used. The Crank-Nicolson implicit scheme is
used for both Problems I and 111 in this article, giving
excellent results. Details of the method can be found in
standard texts on numerical analysis} ; hence, it will
not be discussed further in this study.

In order to solve the inverse problems (ill-posed
regions of Problems I and III, entire regions for
Problems I1I and IV) by the method presented in
Section 3, it is necessary to add the term y (32T /0% to
the left-hand sides of equations (1a), (13), {15), and

1 See, for example, Ames [11] or Richtmyer and Morton

(121
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{19a). The resulting differential equations can then be
discretized by any conventional method for hyperbolic
equations. Consistent with the discussion accompany-
ing system (7), the numerical solution is obtained for
all time steps at a given spatial node before any
temperature values are computed at the next spatial
node. This is in contrast to solution methods for the
direct problem which generally solve for all spatial
nodes at a given time step before computing any values
at the next time step.

Asan illustration of the solution procedures used for
each inverse problem, consider the modified equation
for the ill-posed region of Problem I,

T 8T &T 0(x. 1) (22)
. N T X, t). 2
ot & Xt

Introducing the discrete mesh (x,. ;) and using the
customary notation T;;, = T(x, t;), equation (22) is
discretized using central differences to approximate all
derivatives. This results in the following 2nd-order,
explicit difference equation:

.

i
(j‘a}’(ri,p:-z"rg;‘}'T: j~i) + o

! 2At

i

1
x (Ti.ﬁ-i—Ter) = (:&;’)7

+ Ty ) + Qlx, 1)+ 0[(AxY + (Ar)*].

Equation (23) is tri-level, since temperature values
from three different spatial positions appear. It is
explicit because only one temperature value at the
unknown spatial position x;, , is involved. Courant,
Fredricks, and Lewy [13] have shown that this
difference equation is convergent (numerically stable
and consistent) to the differential equation (22) pro-
vided the inequality

{Ax)
N i
" (ArY

(Tivm,j“ZT

(23)

{24)

is satisfied. In practice, this condition poses virtually
no restriction at all, since 7 must be very small from
previous considerations.

The discretization of Problems (I, IIT and IV follows
closely the previous discussion for Problem I. As in
equation {23), the difference equations for these prob-
lems, are also 2nd-order, explicit and tri-level. For
Problem 11, solution is restricted to the region where
x+t<n/2 since the exact solution (14) becomes
infinite if this condition is violated. Problem IV is
linear, and hence, is stable if equation (24) is satisfied.
Were the other problems linear, numerical stability
would occur when equation (24) holds for Problem I1
and when

______________ (25)
holds for Problem I11 [13]. Although stability con-
ditions for the actual nonlinear problems are not
known, equations (24} and (25) were easily satisfied
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(since y must be very small) and no computations
showed any sign of instability.

6, COMPUTATION RESULTS

Computer programs have been written implement-
ing the numerical procedures of the previous section
for each of the sample problems. The exact solutions
were also computed and compared with the difference
solutions. Results reported here for each problem were
calculated using a value of 7 = 0.01. although all runs
with 7 < 0.01 gave virtually identical results,

The calculated results from all four sample problems
showed good accuracy when compared with the exact
solutions. As depicted in Table 1. the radial profiles of
discrete temperatures for Problem I showed agreement
with exact values to four decimal places for most
points. To illustrate the time behavior of the solutions
for Problem I. Table 2 compares the surface tempera-
tures and heat fluxes with the exact values. At cach
time step, the surface heat flux was computed from the
temperature distribution using the following Znd-
order. backward difference approximation for the
temperature derivative:

Ty 1
) =¥

ig [

} ;
w4
poxoed

i

+ 0{{Ax)*] (26

Again, excellent agreement with exact values can be
observed.

The results for Problems 11, 111 and I Vare shown in
Figs. 3-6. In each case, the relative error between the
computed and exact solutions (analogous to columns
4 and 7 of Table 2) is plotted for each time step of a
short transient. The calculated fluxes used to produce
Fig. 6 were computed using the difference approxi-
mation of equation (26). In Fig. 3. the large error near
the time point 0.571 is expected, since the exact
solution becomes infinite here. Although the com-
puted solution also increases. it cannot match the
extremely rapid growth of the exact solution.

The solution to each problem was computed twice,
once using exact boundary data and once using data
perturbed at each time step by uniformly distributed
random errors between +1%,. As expected, the calcu-
lations using exact data yield results much closer to the
exact solutions. However, even the results using the
inaccurate data are encouraging, since the random
errors are propagated as slight inaccuracies in the
surface values, but not as viscious oscillation or
unbounded growth.

This is, in fact, exactly what is expected of a good
solution method. 1t is impossible for any method to
produce valid surface computations from erroneous
data, since any calculation is only as good as the data
used. However. it is possible to construct methods that
(i) produce calculated values that have the same order
of accuracy as ‘given’ data, and (ii) minimize the effects
of instabilities arising in either problem formulation or
numerical computation.
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Table 1. Problem I spatial profile comparison! of calculated and exact temperatures solution at selected time values?

Radial values

Time 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 095 1.00
L5 04145 04027 03898 03760 03612 0.3456 03291 03117 02936 02747  0.2552
04145 04027 03899 03760 03613 03456 03291 03118 02936 02748  0.2552
3.0 0.1958 0.1902  0.1841 0.1776 0.1706 0.1632 0.1554 0.1472  0.1387 01298  0.1236
0.1958 01902 0.1842 01776 0.1707 0.1633 0.1555 0.1473  0.1387 0.1298  0.1236
45 0.0925 0.0899 00870 0.0839 00806 0.0771 00734 0069 00655 00613  0.0569
00925 00899 00870 0.0839 0.0806 00771 00734 00696 0.0655 0.0613  0.0569
! Top line is calculated ; bottom line is exact solution.
2 Uses parameter value 8 = —0.5.
Table 2. Problem I surface calculations®
Calculated Exact Relative Calculated Exact Relative
Time temperature temperature error? flux flux error?
0.0 0.5403 0.5403 0.0000 0.8422 0.8415 —0.0008
0.5 0.4207 04208 0.0001 0.6557 0.6553 —0.0005
1.0 0.3277 0.3277 0.0001 0.5106 0.5104 —0.0005
L5 0.2552 0.2552 0.0001 0.3977 0.3975 —0.0005
2.0 0.1987 0.1988 0.0001 0.3097 0.3096 —0.0005
25 0.1548 0.1548 0.0001 0.2412 0.2411 —0.0005
30 0.1205 0.1206 0.0001 0.1879 0.1878 —0.0005
35 (.0939 0.0939 0.0001 0.1463 0.1462 —0.0005
40 0.0731 0.0731 0.0001 0.1139 0.1139 —0.0005
45 0.0569 0.0569 0.0002 0.0887 0.0887 —0.0005
! Uses parameter values § = —~0.5, x” = 0.5.

2 Relative error = (exact — calculated)/exact.

8 — e
e . ~— Inaccurate Data 55 }
o «—+ Exact Data ‘
O 4 :
o
("4 ;
w !
> 0y —
—
< ;
"}
wi
m _4L 1 1 L 1 1 ,

0.0 01 02 03 04 05 0.6

TIME

FiG. 3. Problem I surface temperature results.

It is evident from Figs. 3-6 that the solution
methodology used here satisfies the first condition.
The general accuracy of the exact data is preserved in
the computation of the surface values. This can be seen
by noting that the relative error points for these cases
lie generally within one percent of the line where error
is zero. Inaccurate data results in surface computations

which are also inaccurate by roughly the same order of
magnitude. That is, random data errors within 1%
produce surface errors generally within 2-3%.

It has been the general thrust of this article to
demonstrate that the new solution methodology also
meets the second condition, The actual problem solved
[system (6)] is well-posed. The difference equation is
numerically stable [equations (24) and (25) are satis-
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fied]. In each case, the error in the computed surface
values has no definite frequency and in several cases
actually decreases in time. It is the direct result of
positive and negative random errors, reflecting only
the inaccuracy of the data; oscillatory or growth
instability is not present. Thus, it is evident that the
second condition is indeed satisfied by the solution
approach presented here.

The data in most real-world problems contain
varying amounts of random errors or noise, which can
often be largely eliminated by smoothing techniques.
Although this subject can be considered indepen-
dently, it is worthy of mention here. While smoothing
generally results in more accurate data, some per-
turbations that appear to be inaccuracies might ac-
tually be valid components of the data. In any case, the
smoothing techniques must maintain or improve the
validity of the data itself. The inverse problem solution
methodology must then produce surface values that
are accurate with respect to whatever data is given.
Although several popular approaches have combined
smoothing with the inverse solution technique, this, in
general, need not be the case.

CHARLES F. WEBER

7. SUMMARY AND CONCLUSIONS

The analysis of the linear inverse formulation in
Section 2 showed that the exact solution of system (1)
is characterized by discontinuous dependence on data
(instability). Nevertheless, most previous solution pro-
cedures have attempted to solve system (1) by a direct
approach, and certain of these methods have obtained
reasonable solution results for some cases. However.
the ill-posed nature of the problem implies that direct
solution procedures are not capable of consistenih
producing reliable results.

In order to be assured of a meaninglui solutior,
was useful to completely reformulate the problem.
Thus. the heat conduction operator was approximated
by a hyperbolic equation. and was solved numericallv
for all time steps at each spatial node before progress-
ing to the next spatial node. Although this violates a
fundamental principle of ‘direct” heat conduction
(namely. temperatures at a given time do not depend
on temperature values at any future time). it was secn
to be a significant factor in devising a solution
methodology for the inverse probiem. Of particular
importance in this approach was the introduction of
the coefficient y [ cf. equation (6a)], which was required
to be small in order to (i) assure that the governing
equation accurately described heat conduction. i}
reduce the domain of influence of the added finai time
condition, and (iii) maintain numerical stability. The
formulation presented in Section 3 utilized all of these
elements to produce a well-posed problem that closels
approximated the original inverse problem.

The new solution method was applied to several test
problems and the resulting solutions were in good
agreement with the known exact solutions. The pro-
cedure was applicable to nonlinear problems and o
problems involving several matenal regions. The
numerical solution was obtained efficiently and
quickly by an explicit, 2nd-order algorithm ; solution
stability was maintained with insignificant restrictions
on stepsizes, even for randomly perturbed data. Thus,
the method appears to be applicable to virtually any
formulation of this inverse heat conduction problem.
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ANALYSE ET SOLUTION DU PROBLEME INVERSE ET MAL
POSE DE LA CONDUCTION THERMIQUE

Résumé—Le probléme inverse de la conduction se pose quand les mesures expériementales sont faites a
P'intérieur du corps et qu'il est souhaité connaitre la température et le flux thermique 4 la surface. On montre
que le probiéme est mal posé car la solution révéle une dépendance instable des fonctions des données. Une
procedure speciale est développée pour fe cas monodimensionnel et elle remplace Yéquation de la conduction
thermique par une équation hyperbolique approchante. Ilest montré que si les roles des variables de temps et
d'espace sont interchangés on obtient un probléme 4 valeur initiale pour I'équation d’onde amortie. Puisque
cette formulation est bien posée, les procédures analytiques et numériques sont efficaces, Des exemples de
calcul montrent que cette approche conduit 4 de? résultats cohérents pour des problémes linéaires ou non-
inéaires.

ANALYSE UND LOSUNQ DES SCHLECHT KONDITIONIERTEN INVERSEN
WARMELEITUNGS-PROBLEMS

Zusammenfassung — Das inverse Problem der Wirmeleitung tritt auf, wenn experimentelle Messungen im
Inneren eines Korpers vorliegen und die Werte von Temperatur und Wirmestrom auf der Oberflsiche
gesucht sind. Es wird gezeigt, daB diese Aufgabe insofern schlecht konditioniert ist, als die Ldsung eine
instabile Abhiingigkeit von den gegebenen Daten-Funktionen zeigt. Bs wird ein spezielles Lésungsverfahren
fiir den eindimensionalen Fall entwickelt, bei welchem die Wiirmeleitungsgleichung durch eine approximie-
rende hyperbolische Gleichung ersetzt wird. Aus der Sicht einer neuen Perspektive, bei der die Rollen der
Raum- und der Zeitvariablen vertauscht sind, wird ein Anfangswertproblem fiir die gedimpfte Wellenglei-
chung erhalten. Da diese Formulierung des Problems gut konditioniert ist, stehen sowoht analytische als
auch numerische Lasungsverfahren dafiir zur Verfiigung. Beispielrechnungen bestiitigen, daf dieser Ansatz
konsistente, verliBliche Ergebnisse fiir lineare und nichtlineare Probleme liefert.
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AHAJIU3 U PEHIEHUME HEKOPPEKTHOW OBPATHOW 3AJIAUM TEIUIOINPOBOLHOCTH

Annorauus — OOpaTHasg 3a3ada TENJIONPOBOJHOCTH BOIHHKAET B TOM Cjydae, KOF/a N0 JKCACPHMEH-
TanbHBIM JAHHBIM, 32MEPEHHBIM BHYTPH Tejla, HeoOXOMHMO DacCYMTaTh TEMOEPATYPY ¥ HAOTHOCTH
TEMIOBOTO NOTOXA Ha nopepxHocTw. [10Xa3aHo, 470 TAKYO 3anadyy TPYOHO COOPMYIHpOBATH KOp-
PEKTHO, TAaK KK pellieHie HEYCTOHYHBO 3aBUCHT OT 33JaHHBIX IKCIEPHMEHTAIBHO dbyuxuuit. Npextoxen
CReHHa bHbIH METOJ PeLUCHHS I8 OJHOMEPHOTO CJyYas, B KOTOPOM YpPaBHEHHE TEILIOTIPOBOIHOCTH
3aMeHSeTCs anTpOKCHMAPYIOLIMM ero runepboaHyecknM ypasnendem. Ecnm pacemaTtpupars 3azady
RO APYTHM YITIOM 3PCHHA, T. €. NOMEHATH POJSMH APOCTPAHCTBEHHBIE H BPEMEHHBLIC NEPEMEHHBIC.
TO MOKHO NONYYHTh 334a4y 0% YPABHEHHS, ONMCHIBAIOLIErO 3aTyXalOIIHe Bo/HbL. B cBsizn ¢ tem. 410
Takas GOPMYIHPOBKA SBIACTCH KOPPEKTHOH, MOXHO JIETKO TOJYYHTL AHANUTHYECKOE M UHCICHHOE
peiuesHs. Ha npuMepax rnoka3aHo, 4To TaKO# METON aeT COTACOBAHHBIC M HANEXKHbIE PE3YIbTATHS
pM pelUeHHH KaK JIMHEHHBIX, TaK W HEIMHEHHBIX 3a/ay.



